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Abstract

An ability to understand and predict financial wellbeing for individuals is of interest to econo-

mists, policy designers, financial institutions, and the individuals themselves. According to

the Nilson reports, there were more than 3 billion credit cards in use in 2013, accounting for

purchases exceeding US$ 2.2 trillion, and according to the Federal Reserve report, 39% of

American households were carrying credit card debt from month to month. Prior literature

has connected individual financial wellbeing with social capital. However, as yet, there is lim-

ited empirical evidence connecting social interaction behavior with financial outcomes. This

work reports results from one of the largest known studies connecting financial outcomes

and phone-based social behavior (180,000 individuals; 2 years’ time frame; 82.2 million

monthly bills, and 350 million call logs). Our methodology tackles highly imbalanced dataset,

which is a pertinent problem with modelling credit risk behavior, and offers a novel hybrid

method that yields improvements over, both, a traditional transaction data only approach,

and an approach that uses only call data. The results pave way for better financial modelling

of billions of unbanked and underbanked customers using non-traditional metrics like

phone-based credit scoring.

1. Introduction

Humans have often been described as socio-economic beings i.e. their financial and economic

behavior is intricately connected with their social behavior [1]. Not surprisingly, multiple stud-

ies have connected individual social capital with financial outcomes and credit risk [2, 3].

Since finances have a profound impact on human lives and are of vital importance to one’s

livelihood, researchers have been exploring approaches to quantify financial trouble and iden-

tify methods to prevent it [4, 1].

Traditional methods of trouble prediction and credit scoring rely on historical transaction

data and demographic data [5]. Credit bureaus, like Equifax and Experian, rely on financial

information such as credit history, current credit use, or ratio between credit limit and out-

standing balance. People having no past records are thus not able to participate in such a sys-

tem. The World Bank [6] estimates that there are still two billion adults who are unbanked and
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lack formal financial services completely. Further, even among the ones having an account

many are underbanked with banking penetration (as measured by household debt to GDP

ratio) being as low as 10% for countries like India [7]. This cohort of people without credit his-

tories also includes refugees, immigrants, students, and recent college graduates.

Most financial institutions use capacity, capitals or collaterals (e.g. property owned, reserve

cash, debt-to-income ratio) which are static, one-time data to estimate the credit-worthiness of

a customer, or use segmentation approaches which put many individuals into one unified

bucket (e.g. based on age, gender, or educational qualifications) [5, 8]. Such methods are often

not accurate as consumers may fail to (or choose not to) provide correct and complete demo-

graphic data, which leads to a sparse, ambiguous and unreliable dataset. Thus, there is a need

for novel ways to generate credit scores and build suitable models which can iteratively learn

and predict the future probability to default on credit card payments.

We posit that information about an individual’s social connections provides a natural way

to augment such demographic and past behavior data for better modeling of individual finan-

cial wellbeing. Conceptually, the notion of social capital has often been connected with that of

financial capital [2, 3]. Further, at an empirical basis, multiple studies have connected an indi-

vidual’s position in the network, their embeddedness, and overall social behavior with financial

risk [9, 2]. Given, the widespread adoption of mobile phones, even amongst the under-banked

populace [10], we suggest the use of phone-based social behavioral data to augment and build

better predictive models for individual credit risk. Hence, this work focuses on predicting

future financial trouble by identifying socio-behavioural markers of financial trouble.

The contribution of this paper are twofold:

1. Motivate and ground the use of mobile phone based socio-behavioral data to estimate

financial wellbeing.

2. To define a phone (social behavior) based Machine Learning approach to predict future

propensity of financial trouble.

We do so by using a large dataset of ~180,000 individuals in Taiwan and cross validate our

results over several bins in a two-year period. To the best of our knowledge, this is the first

work that reports results on predicting financial trouble using phone based behavioral data for

such a large scale population (~180,000 individuals) over a long time frame (2 years). Our

methodology tackles highly imbalanced dataset, which is one of the most pertinent problem

with modelling credit risk behavior, and identifies:

1. A call only model that works as well as a model with transaction only data with an

AUCROC of ~.73

2. A novel hybrid method that improves over both a traditional transaction data only model

as well as a model that uses only call data (~8% average improvement).

In the next section we survey literature on the previous work done in financial wellbeing

prediction, how mobile data, when used as a proxy for social capital, can become more relevant

in behavioral prediction and how it can be further expanded to questions pertaining to finan-

cial problems. We also touch upon the recent studies that use Credit Card records (CCR) data

in behavioral studies.

2. Literature review

Financial health is critical to the wellbeing of a society and has received widespread attention

from researchers and has long transcended its economics roots to be of interest to psychologists
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and computer scientists as well. In this section we summarize related work along four verticals.

First we summarize the literature on financial trouble prediction—specifically the standard

methodology followed and the evolution on these methods. Next we summarize how mobile

phone data has become relevant in recent times and the myriad areas of behavioral prediction.

Next, we discuss the interconnections between social capital and financial wellbeing and lastly,

we present the literature on financial prediction which involves the analysis of phone and other

ubiquitous sensor data.

2.1 Financial wellbeing as a field of study

Financial wellbeing is of utmost importance to both institutions and individuals. Institutions

are now moving from crisis management to risk control. Financial outcomes for individuals

can be statistically predicted from past payment history [5] using methods like time series [11],

classification trees and more recently neural networks [12, 13, 14]. Yeh et al [15] used historic

transaction data and compared several machine learning techniques to find Neural networks

to give the best predictive power.

On a personal level, financial trouble has been linked to higher stress and is a significant fac-

tor for suicide [16] and alcohol addiction [17]. Researchers also found out that people who had

better financial health had better physical health as well [14]. There is a large body of literature

that connects personality traits and socioeconomic status to unreliable finical behavior with

impulsiveness being correlated to spending behavior [18] and impatient people being more

prone to default [19]. Financial bankruptcy has also been linked inversely to measures of social

network, trust and cooperation [20].

2.2 Use of mobile phone in behavioral prediction

The ubiquitous nature of mobile phones in our daily lives is allowing researchers to create

robust personalized models of human behaviour in social, spatial, and temporal contexts.

Mobile phone usage has been used to reveal circadian rhythm patterns [21] and help identify-

ing social signatures which are persistent over time [22]. Phone based features have been used

as behavioral markers for cooperation levels [23], study individual and collective human

dynamics [24, 25], infer personality [26] and understand mental health [27]. Coscia & Haus-

mann [28], recently showed that mobility networks can be obtained from cell-phone call net-

works as well. The availability of large-scale phone-based data with behavioural mapping

abilities empowers researchers to not only validate and refine existing findings about health

and social wellbeing but also leverage this predictive power to newer fields like understanding

spending patterns and inferring financial wellbeing.

2.3 Social capital and its links to mobile and financial wellbeing

Social capital describes the ability of individuals or groups to access information, trust and rec-

iprocity embedded in their social network [29]. On an individual level, social capital has been

connected with higher levels of satisfaction, trust, and mental health [30]. The influence of

strong and weak ties in a network has also been connected to social capital [23]. Such features

have been operationalized over online social networks [31] and recently over phone networks

in different contexts [32]. One’s position in a social network has been found to be associated

with economic outcomes and can also improve the efficiency of economic capital [9]. For

example, Van Bastelaer [3] has connected social capital with access to credit and Wang and

Xiao [33] found that those with higher social support incurred less debt. On the other hand,

some studies link social capital to negative externalities [34] and highlight the detrimental
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effects [9, 35, 36]. Thus, social capital and broadly speaking the social processes, can have sig-

nificant impact on an individual’s socio-economic wellbeing [35].

2.4 Mobile phone and financial data

In the US alone, over 50% of smartphone users having a bank account avail mobile banking

services [10]. With the availability of large amounts of detailed call and sensor data, researchers

are trying to incorporate such data into financial risk prediction. Recently researchers are shift-

ing from traditional methods involving historical transaction data to predict financial troubles

to newer methods to predict trouble and credit scoring. In fact, mobile phone usage has been

linked to stress and financial trouble [37] and socio-economic status has also been inferred

from mobile phone activity data [38]. Researchers are now studying the interconnections

between social and mobile features and spending behavior [1] and even trying to forecast

financial wellbeing using mobility and call data [39, 40]. On the other hand, transaction data is

also finding relevance in computational social science studies to predict consumption behavior

[41] and patterns in transaction history can even identify individuals [42]. Financial bank-

ruptcy has also been linked inversely to measures of social network, trust and cooperation

[20]. Recent research has shown that credit card data like mobile phone data, can be used to

detect human mobility and inform us about the preferred transitions between business catego-

ries [41] and thus create economic profiles of entire cities [43].

Building upon such trends, this work aims to analyze a large collection of longitudinal data

(180,000 individuals; 2 years’ time frame; 82.2 million monthly bills, and 350 million call logs)

to understand the role played by socio-behavioral features in improving the modeling of credit

risk as undertaken via traditional transaction history approaches.

3. Dataset

This study combines several datasets for ~ 3 million customers of a major bank and combines

it with mobile data for a subset of same individuals. A summary of the data considered is

shown in Table 1.

3.1 Bill data

The bill data contain about 82.2 million monthly bills belonging to 3.6 million credit accounts

from a major bank in Taiwan. For each account, the basic bill records, such as bill amounts,

maximum-allowed credit amounts, and the paid amounts were collected for each month from

January 2014 to December 2015. Customer names were removed and only anonymized identi-

fiers were used for analysis. Besides all the basic bill records, the bank also marked the Pay

Table 1. Dataset summary for various data sources used in the study.

Dataset Description # records

Bill Data Records of bill generated for each month 3.6 million accounts, 82.2

million monthly bills

Transaction

Data

Day to day transaction for each individual including purchase

type and location of purchase

2.3 million accounts, 190

million transactions

Demographic

Data

The account holder which is recorded and regularly updated

by the bank.

1.6 million

Mobile Data Call related data including hashed remote number called and

doesn’t include any private information

180, 000 users, 350 million call

logs

The datasets are explained further in the following subsections.

https://doi.org/10.1371/journal.pone.0191863.t001
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Rating for each customer in each month based on his or her paying behavior in the previous

month with the following definition (Table 2):

In order to reduce the number of meaningful dependent variable we decided to make it

binary. Based on this Pay Rating records, a customer is considered having financial trouble in

a specific month if she fails to pay even the minimum amount to avoid a late fee or not at all

i.e. got a Pay Rating 4, 5, or 6. This new “trouble” variable will be used as the outcome variable

in our prediction model (Table 3). We also tried including Pay Rating 2 (paying full amount—

not on time) into the definition of “trouble”, which leads to worse predicting performance as

will be shown in Appendix A in S1 File. It might suggest that people have Pay Rating 2 are just

missing their deadlines by accident, rather than having financial troubles, and hence are harder

to be predicted in this application. However, although the results are worse, the trend is still

the same, i.e., call features still improve the performance and the combined model outperforms

homogeneous models, as will be discussed in following sections.

3.2. Transaction data

The transaction data contain about 190 million transactions made by 2.3 million credit

accounts within the same 2-year time interval as specified in the bill data. The transactions fol-

low a standard log normal distribution (Fig 1). The same anonymized identifications are used

to map customers between the bill and the transaction datasets. The transaction data include

the following attributes:

• Transaction date (in year-month-day format)

• Transaction amounts

• Merchant shop names

• Unique merchant code given by the bank

• Merchant country and city

• Merchant category codes (4-digit MCC code which explains the category of the merchant

e.g. one for hotels, one for office supply stores, etc.)

Table 2. Bill data consumer rating summary.

Rating Description % of Population

0 No consumption 52.35%

1 Pay full amount on time 39.85%

2 Pay full amount—not on time 0.76%

3 Pay minimum 5.98%

4 Pay minimum amount late 0.55%

5 Pay less than minimum amount 0.06%

6 Not pay 0.46%

https://doi.org/10.1371/journal.pone.0191863.t002

Table 3. Trouble variable summary.

Trouble Description % of Population

0 Avoids late payment 98.94%

1 Makes Payment late or no Payment 1.07%

https://doi.org/10.1371/journal.pone.0191863.t003
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A summary of statistics of the transaction data can be found in Appendix B in S1 File. The

attributes listed above are further processed into other calculated measures or indices to be

used as features in our prediction model, as will be described in Section 4.

3.3. Demographic data

The basic demographic features and the account properties of about 1.6 million customers are

also provided by the bank. The same anonymized identifications are again used to map cus-

tomers between different datasets. The demographic data include the following attributes:

Fig 1. Distribution of credit card transaction amounts (on a log scale).

https://doi.org/10.1371/journal.pone.0191863.g001
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• Education level

• Gender

• Annual income level

• Marital status

• Position in occupation

• Post code of address

A summary of statistics of the demographic data can be found in Appendix B in S1 File.

3.4. Call data

We also have access to 350 million call logs of about 180 thousand customers within 22 months

from January 2014 to October 2015. The customer mapping are made by the bank via the asso-

ciated anonymized identifications. These call data contain:

• Timestamp of beginning, off-hook, and idle time of each call (in Unix time)

• Duration of each call

• Remote number of each call

• Whether or not the remote number was saved in the contact list of the phone

The content of these calls were not recorded and only the call metadata (time, duration,

anonymized person ids) were used to create the metrics. A summary of statistics of the call

data can be found in Appendix B in S1 File. From these per-call logs we constructed call-

related features for each customer including volumes of calls or proportion of calls with some

specific properties, as will be described below.

3.5. Data preprocessing and cleaning

In order to ensure integrity and completeness of the data, we removed 35 (< 0.01%) accounts

which have more than one bills in at least one month, and then removed 14,027 (0.39%)

accounts which have blank Pay Ratings. After removal, there were ~82 million bill records

belonging to 3.6 million credit accounts. From the transaction data, we removed 139,314

(5.97%) accounts which map to more than one customers and the remaining data contained

about 164 million transactions made by 2.2 million credit accounts each map to a single cus-

tomer. The bill data and transaction data are then merged together and the resulting joint data

consisted of about 2.2 million customers.

From the call data of each customer, we removed call records with invalid timestamps

(e.g., records without idle time or records with off-hook time occurring after idle time), abnor-

mal remote numbers (e.g., records without remote number or records with remote number

shorter than 3 digits), or abnormal durations (e.g., records with duration longer than 6 hours).

The resulting call data contain about 350 million call records belonging to 180 thousand

customers.

We then merged all our datasets to finally get ~180,000 records of transaction history as

well as call records.

4. Feature identification—Definitions and rationale

We use sliding-window mechanism to define our predicting periods. Concretely, we use fea-

tures in the previous 9 months to predict whether a customer will have financial trouble in the

Predicting financial trouble using call data—On social capital, phone logs, and financial trouble
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current month, making each window to be 10-month long. In this problem setting, we can use

both period-specific features and consistent features as described below.

4.1. Period-specific features

For each possible predicting period, we use the transaction and call data collected in the first 9

months of the period to construct features as follows.

4.1.1. Transaction features. Based on a review of features defined in related literature on

quantifying user behavior using financial transactions [39], we construct the following statisti-

cal features for each customer (Table 4):

4.1.2 Call features. At a conceptual level, social capital has been connected with an indi-

vidual’s relative position in the network [34] On a more granular level, the influence of strong

and weak ties in a network has been connected to social capital [34, 9]. Similarly, prior research

links the frequency of interactions with an individual’s network with their social capital [34,

45]. Further, social capital has been connected to reciprocity of contacts and the ease of avail-

ability [46, 47].

Such features have been operationalized over online social networks [31] and recently over

phone networks in different contexts [26]. Hence, based on a survey of existing literature on

quantifying user behavior using phone transactions (e.g. [1, 23, 26, 27]), we construct the fol-

lowing statistical features for each customer in Table 5.

4.3 Demographic features

As commonly used in credit scoring systems, we also collected the following demographic fea-

tures (Table 6):

Table 4. Transaction based features.

Metric Formula Description

Min/Max/Total Min /Max / Log (T) Quantifies the overall transaction activity. Note: T can be number of transactions /transaction

amount

Coefficient of

Variation

standard deviation of T
Average T

Quantifies the spread of T.

Weekly Ratio T during weekend
Total T

Quantifies the preference to spend on weekdays.

Holiday Ratio T during holiday
Total T

Quantifies the preference to spend on holidays.

Domestic Ratio T in Taiwan
Total T

Quantifies the preference to spend in Taiwan vs foreign.

MCC Ratio T in a given MCC
Total T

Quantifies the likelihood to spend on a given category as described below.

Salary Days Ratio T in first;middle; or last 10 days
Total T

Quantifies the likelihood to spend within 10 days of salary credit (i.e. first 10 days of the

month)

Diversity ∑j pj logb pj
pj = percentage of T in MCC ‘j’, b = total number of

MCC

Quantifies the evenness of spending across MCC� category bins

Loyalty T top 3 categories
Total T

� 100
Quantifies the preference of spending in top 3 MCC� category bins

�where T can be number of transactions /transaction amount MCC categories [44]:

• Business Services

• Utilities

• Service providers

• Retail Stores (Grocery stores, Supermarkets

• Government services

https://doi.org/10.1371/journal.pone.0191863.t004
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5. Results

5.1. Methodology

We considered a binary classification problem in which the outcome is defined as whether or

not a customer will have financial trouble in each month using three different sets of features:

using only call, only transaction and the third combining both. The model trained in a specific

window will be tested in the next window that is one-month shifted from the training window.

For example, we use features collected from January 2014 to September 2014 and the outcome

in October 2014 to build a prediction model, and evaluate the performance of the model using

the features collected from February 2014 to October 2014 and the outcome in November

2014.

The outcome considered in this work leads to extremely imbalanced datasets in which less

than 3% of customers are considered having financial trouble in any given bill month. To miti-

gate the effects of accuracy paradox due to such imbalance, the majority class (i.e. customers

considered not having financial trouble) is randomly sampled to produce a balanced training

Table 5. Call/Call duration data based features.

Metric Formula Description

Social Activity Log (Comm�) Quantifies the overall communication activity.

Diurnal Activity Ratio Comm � during phase 1

Total Comm �
Quantifies the circadian rhythm the ratio of communication taking

place in four six hour phases.

Weekly Activity Ratio Comm � during weekend
Comm � during weekday

Quantifies the difference between “work” week and the more social

weekend behavior.

Strong/Weak Ties

Engagement Ratio

Comm � top=bottom third contacts
Total Comm

� 100
Quantifies the communication effort that a user devotes to her top/

bottom third contacts. We do this for both known, unknown and

overall contacts.

Daily Inter-event Time Time iterval between two comm � ðhoursÞ
# of comm � in the day

Quantifies the frequency of comm� in a day.

Diversity ∑j pij logb pij
pij = percentage of engagements made by individual ‘i’ to

contact ‘j’, b = total number of comm�

Quantifies the evenness of engagements across contacts

Contact Engagement

Ratio

Comm � with saved contacts
Total Comm �

Quantifies the reception of comm� from contacts i.e. numbers in the

phonebook of the individual (can also be landline numbers)

Comm� Latency Ringing during phase 1

Total comm �
Quantifies the latency in comm� (calculated only for incoming and

missed)

Comm�1-Comm�2 Ratio Incoming comm � 1

Outgoing comm � 2

Quantifies the likelihood of replying to the communication during a

given time period.

�where comm can be incoming/outgoing/missed/total calls

https://doi.org/10.1371/journal.pone.0191863.t005

Table 6. Demographic based features.

Variable Description

Gender 1: male 2: female

Education Level 1: doctoral; 2: master; 3: bachelor; 4: college; 5: high school; 6: others

Annual income level (1: below 1 million; 2: 1 ~ 3 million; 3: 3 ~ 5 million; 4: above 5 million)

Marital status (1: married; 2: not married; 3: divorced)

Position in

occupation

(1: responsible persons; 2: executives; 3: mid-level executives; 4: normal employees; 5:

others)

Number credit cards Number of open credit cards across all banks

https://doi.org/10.1371/journal.pone.0191863.t006
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data, and the obtained model is then tested using realistic imbalanced settings in the testing

window. All possible testing windows are denoted as below:

• P01: 2014/02-2014/10

• P02: 2014/03-2014/11

• P03: 2014/04-2014/12

• P04: 2014/05-2015/01

• P05: 2014/06-2015/02

• P06: 2014/07-2015/03

• P07: 2014/08-2015/04

• P08: 2014/09-2015/05

• P09: 2014/10-2015/06

• P10: 2014/11-2015/07

• P11: 2014/12-2015/08

• P12: 2015/01-2015/09

• P13: 2015/02-2015/10

• P14: 2015/03-2015/11

All models are built using eXtreme Gradient Boosted Models (XGBoost). Xgboost is a

boosting ensemble method which sequentially trains models with each subsequent model

seeking to minimize residuals weighted by the previous model’s errors using a given loss func-

tion [48]. The balancing process for each training window are repeated 10 times to get the

average feature importance. All models are applied on the testing window to get the average

testing performance. The performance is measured by area under the receiver operating char-

acteristic curve (AUCROC), and the feature importance are estimated in terms of (normal-

ized) relative influence. We use the R-based implementation of Xgboost for all our tests [49].

We considered the fact that AUCROC can be a useful metric in classification scenarios when a

trade-off between true positive rate and false positive rate is of vital interest. (Note: The base-

line for ROC was taken to be 0.500 irrespective of the cross-validation.).

5.2. Testing results

We built models for each of the fourteen training periods, applied them to the corresponding

testing windows. The averaged results are (Table 7):

It can be seen that, in all cases, adding call features can improve the predicting power of the

model. We also note that the results are consistent over each period. Results of all 14 predicting

periods are showed in Fig 2.

Table 7. Testing results—Predicting financial trouble as a function of different feature sets.

Call +Transaction + Demographics Call Transaction + Demographics

AUCROC 0.781 0.725 0.731

Recall 0.731 0.679 0.689

Accuracy 0.687 0.649 0.652

https://doi.org/10.1371/journal.pone.0191863.t007
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We also perform a pairwise t-test to check whether the improvements in AUCROC are sig-

nificant when we take the combined model. We get the following results (Table 8):

In both cases we reject the null hypotheses (P<0.001) and find that the combined model is

an improvement over the homogeneous models.

From Table 9, an interesting thing to note is that the T-test fails (p-value > 0.5) when we

test the transaction only vs the call only model in terms of both AUCROC and the accuracy

scores. This indicates that a call only model can perform almost as well as a transaction only

model which contains no transaction records. This result suggests that a call only model can

replace a model made of transaction history and produce equivalent (if not better) results.

5.3. Feature importance

In the setting of including call features, the overall importance of call features accounts for

about 60% among all features in all different predicting periods. We rank all features based on

their average importance in all 10 iterations in each predicting period, and then take the aver-

age rank over all 14 periods. To gain further insight into the features identified and their

Fig 2. AUCROC comparison across all periods.

https://doi.org/10.1371/journal.pone.0191863.g002

Table 8. T-test for AUCROC.

Testing call + transaction model against: T score (P value)

Only transaction model 28.422 (4.342e-13)

Only call model 33.248 (5.802e-14)

https://doi.org/10.1371/journal.pone.0191863.t008

Table 9. T-test comparing call only and transaction only model.

Testing call vs transaction model T score (P value)

AUCROC -2.1056 (0.05525)

Accuracy -1.027 (0.3231)

https://doi.org/10.1371/journal.pone.0191863.t009
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relative effect on the propensity of financial trouble we undertook post-hoc correlation analysis

between the trouble variable and the different features identified. The following Table 10

shows the top-10 features for each category, as well as the sign (positive or negative) of their

Pearson’s correlation with the outcome variable (having financial trouble or not). Note that

the correlations were significant (p value< 0.05) for all the listed features except COV (Coeffi-

cient of Variation). See Table 10.

5.3.1 Interpreting call based features. Each of the associations identified above is correla-

tional rather than causation-driven. Hence, we are not able to identify the direction of the

effect. Further, there remains multiple ways to interpret the features. Hence the associations

noted are meant to help interpret the predictive models identified in the preceding sections

rather than being prescriptive in their own right. In future work, we would like to design

intervention studies and/or conduct follow up interviews to understand the nuances of each

association. With these caveats in place, we discuss here the general trends observed in the

associations.

As we can see from Table 10 the most significant feature for both the calls only model and

the hybrid model is Inter-event time (incoming) while Inter-event time (outgoing) also fea-

tures at rank 5 in the top ten. Inter-event time was the average time between two communica-

tions (here incoming calls) in a day. We see that it is negatively correlated to the response

variable indicating that as the time increases between two calls the propensity to default

decreases i.e. people who make or get more frequent calls are more likely to be in financial

trouble. This is an interesting result and may be associated with the darker side of social capi-

tal. Adler and Kwon [35] argue that in-group members may sometime over-embed the actor

and block access to new information. Again, social capital presents risks of negative externality

as outlined by Coleman [34]. It may so happen that the in-group of the troubled individual

may itself be in financial trouble and exploit the other and such a situation may lead to tragedy

of commons for the aggregate. However, the balance of positive and negative externalities are

dependent on the beliefs and source of the social capital so we leave these questions open to

further investigation but at the same time corroborate prior literature that suggests that social

capital can sometimes be detrimental [9, 35, 36].

Another interesting feature is the latency in picking up calls whether it be incoming during

daytime (rank 2) or morning (rank 6), missed (rank 3) during daytime or incoming latency at

night (rank 10). Latency was defined as the ringing time before the call is picked up or gets

Table 10. Top-10 features for each category, as well as the sign (positive or negative) of their Pearson’s correlation with the outcome variable (having financial trou-

ble or not).

Rank Call +Transaction + Demographics Call Transaction + Demographics

1 Inter-event time (incoming) Inter-event time (incoming) # months with at least one transaction

2 # months with at least one transaction Incoming Latency (daytime) Coefficient of variation

3 MCC ratio (Business Services) Missed call Latency Weekend ratio (# transactions)

4 Coefficient of variation Contact engagement ratio (Outgoing) Mean transaction across all banks

5 MCC ratio (Retail Stores) Interevent time (Outgoing) MCC ratio (Retail Stores)

6 Mean transaction across all banks Incoming Latency (morning) MCC ratio (Business Services)

7 Missed Call Latency (total) Landline engagement ratio (outgoing) Domestic Ratio (# transactions)

8 # of opened credit cards Contact engagement ratio (total) MCC ratio (Utilities)

9 Domestic Ratio (# transactions) Contact engagement ratio (incoming) Maximum transaction amount

10 Incoming Latency (daytime) Incoming Latency (night) # of opened credit cards

Red indicates negative impact while green indicates positive taken over all the periods. COV is white as it exhibited positive correlation in some periods while being

negative in others.

https://doi.org/10.1371/journal.pone.0191863.t010
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dropped by the total no of calls (incoming/missed). This implies that people who have trouble

might take more time to pick up calls. While multiple explanations are possible, this could in

part be attributed to the reluctance to engage with others (as above) or even fearing calls from

certain contacts and/or banking agencies.

A third important feature is the contact engagement ratio (rank 4 and 8.) It is defined as the

ratio of total communication spent with contacts saved in the person’s phonebook. This is neg-

atively correlated to the response variable indicating that people with no trouble tend to talk to

known people more and might not engage with unknown numbers. Another way to interpret

this is that preferentially connecting with stronger ties (higher bonding social capital [50]) is

associated with lesser financial trouble.

5.3.2 Interpreting transaction based features. The most significant transaction based

feature is number of months with at least one transaction. This is interesting as people who

have more number of months with transaction seem to be less in trouble indicating that people

who use their credit cards regularly are actually more conscious of the use and thus fell obli-

gated to pay on time. It may so happen that people who rarely use their cards, end up missing

the deadline.

The second and third most significant feature is MCC ratio (business services) and MCC

ratio (retail services). These features indicate the ratio of transactions made at a particular type

of stores and gives us insight into the difference in spending behavior of troubled individuals.

People who spend more on business services are more likely to be in trouble while people who

spend more on utilities might have less trouble. This may be due to the fact that business ser-

vices bills are often larger than the essential groceries bill and people might have a hard time

paying back the non-essential or larger expenses. Also business utilities are over and above the

basic necessities and may include unnecessary expenses.

Finally, the third most important feature is the domestic transaction ratio i.e. the amount

spent in Taiwan compared to all transaction. People who spend mostly in Taiwan tend to have

less trouble indicating that people often overuse their cards while travelling abroad. This could

simply due to higher expenses incurred with foreign travel but could also be associated with a

lack of awareness regarding the exchange rate or the exchange fee levied on such transactions.

5.3.3 Interpreting demographic based features. The most important demographic based

feature is the number of credit cards being opened. This is again negatively correlated to the

trouble again indicating that people are conscious of the credit cards they keep and pay bills

timely.

We notice that several features are common in the hybrid model and the respective homog-

enous models. The transaction only model shares 7 common features with the hybrid model

while call only model shares 2. Thus, similar set of features are present in the hybrid and the

homogenous models indicating that we can use various combinations of the features when

subject to availability of robust data or under computational constraints.

Given that we carry out these interpretations post hoc, we focus on triangulating and identi-

fying general trends across the two analysis methods (correlation and classification) rather

than establishing hard associations between specific variables. These interpretations are only

to aid and steer the discussion on the possible implications of such an association between

mobile data and social behaviour. The main objective of the paper is to motivate the use of

mobile phone based socio-behavioral data to estimate financial wellbeing.

6. Discussion

Overall, the results suggest that phone-based socio-mobile features can have significant predic-

tive power over an individual’s credit risk. This can have important implications for individuals
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as well as organizations. At the same time, they highlight privacy and ethical considerations as

well as opportunities for future work.

All data used in this study were hashed and anonymized and at no point actual phone num-

bers or call contents were available to the personnel undertaking the analysis. All the transac-

tion data and bill data were provided by the bank and was again hashed. These behavior-to-

outcome connections also have implications for the privacy of users [39]. We hope that the

results presented here will raise user awareness on the implications of sharing phone data with

a wide variety of stakeholders and mobile apps. The findings of a public study like this one are

critical to motivating a discussion on the right policy parameters surrounding phone and by

extension social data as there are no standard guidelines about the use of mobile-phone data.

The obtained results highlight the importance of social features in predicting the financial

outcomes of individuals. The given models are applicable to both people with no transaction

history (the call only model) and people with limited transaction history (hybrid model). This

work leverages passively collected data from mobile phones, something which most of the

world now has access to. We would also like to point out that most of the call features can be

created using data from a feature phone as well and is again useful in a demographic where

smartphone might be a luxury. Most financial institutions use static, one-time data to estimate

the credit-worthiness of a customer, or use segmentation approaches which put many individ-

uals into one unified bucket. The emergence of individual transaction profiles for each cus-

tomer now allows for creation of rich personalized models of each user’s behavior that can be

used to predict their behavior. Also we note that the kind of analysis described here can be

done incrementally during the month before the payment deadlines, thus allowing preemptive

remedies before a user starts missing her payments and becomes delinquent.

We also highlight some insights into the nature of social capital and how it might be both

detrimental and beneficial to coping with financial trouble. While some of the features (e.g.

inter-event time for calls) were found to be bad for an individual’s financial wellbeing, others

such as the latency in picking up calls was found to be positively associated with financial well-

being. While each of these results needs to be evaluated in more detail in future work, it moti-

vates the use of large-scale “in-the-wild” social/phone based behavioral markers to study

financial wellbeing. In that sense, it also adds to the existing literature surrounding the use of

smartphones in assessing social capital.

Considering that many major banking apps (e.g. Bank of America, Citi bank) already

require permissions to access call data, it is plausible for them to integrate call-based data to

refine their prediction models. In some large economies like India it is now mandatory to link

all bank accounts and phone numbers to a central unique identification number (called AAD-

HAR), suggesting that in future phone and financial data could be integrated to create hybrid

models. The availability of data in this case would clearly require policy regulations. Lastly

banking in many developing countries are based on microfinancing institutions which largely

carry out transactions over the mobile phone giving the firm access to both banking and call

data. Thus, the advent of mobile banking and centralized data collections can make availably

of large and robust data sets easily available and make hybrid models such as the one studied

here quite feasible.

Finally, with the appropriate checks and balances in place, the observations presented here

could be used in the future to provide feedback and nudges to the individuals themselves. For

example, a sudden decrease in social activities, or change in rhythms of social behavior, could

be used to create customized alerts asking the individual to be extra careful with their financial

payments for the month. Of course the final decision about behavior change must always

remain with the user: they may choose to ignore the message or use it as a reminder to moder-

ate their behavior.
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7. Conclusion and future work

This paper proposes alternative methods to traditional credit scoring and provides a novel

way to predict the future propensity of an individual to default on her credit card bill using 9

months of historic data with an AUCROC of ~.78. This is fundamentally different from the

standard approaches popular with credit bureaus and performs better than comparable trans-

action-based approaches. It goes on to show that call data can be an important signal of a per-

son’s financial troubles and reinforces them as a proxy for socio-economic behavior.

As the world is moving towards smartphones, wearable and more immersive and ubiqui-

tous technology we would consider incorporating data streams collected to further ascertain

the impact of socio-behavioral features on financial wellbeing. Such interconnections could

yield insights into fundamental human behavior while also yielding more accurate risk assess-

ment. Lastly, we would also like to extend and adapt this study to developing economies where

a study like this can make a true impact.
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